Warning
This description is not sufficient for immediate application of the instrumentation. Instruction by a surgeon experienced in handling this instrumentation is highly recommended.

Processing, Reprocessing, Care and Maintenance
For general guidelines, function control and dismantling of multi-part instruments, as well as processing guidelines for implants, please contact your local sales representative or refer to: www.synthes.com/reprocessing
For general information about reprocessing, care and maintenance of Synthes reusable devices, instrument trays and cases, as well as processing of Synthes non-sterile implants, please consult the Important Information leaflet (SE_023827) or refer to: www.synthes.com/reprocessing
Table of Contents

Introduction
- System Overview 2
- Features and Benefits 6
- Indications and Contraindications 8
- Clinical Cases 10

Surgical Technique
- DHS Implantation 12
- DHS Removal 26
- LTSP and ULTSP Implantation 28
- LTSP and ULTSP Removal 33
- DCS Implantation 34
- DCS Removal 38

Product Information
- Implants 39
- Sets 47

Bibliography 48
The Synthes Dynamic Hip System (DHS) offers a variety of treatment options depending on the fracture site and the patient.

Fixation elements

DHS Screw
The well-proven standard for proximal femur fractures.
- Stainless steel / TiAl6Nb7 (TAN)
- Length 50–145 mm
- Outer diameter 13 mm
- Coupling: two flats or octagonal

DHS Blade
The DHS Blade is mainly indicated for osteoporotic patients. It reduces the risk of cut-out compared to the standard DHS Screw.
- Stainless steel / TAN
- Length 65–145 mm
- Outer diameter 13 mm

DHS Emergency Screw
Indicated for revisions in young patients.
- Stainless steel
- Length 50–145 mm
- Outer diameter 14 mm

Plates

DHS plate with DCP holes
Used for more than 25 years.
- Stainless steel / TAN
- Barrel angle 130°–150°
- 2 to 20 holes
- Barrel length: standard and short
- Thickness 5.8 mm
- Fixation with cortex screws Ø 4.5 mm

LCP DHS plate
Better fixation on the shaft allows for minimally invasive approach.
- LCP combi-holes
- Tapered end
- Undercuts
- Barrel angle 130°–150°
- 1 to 20 holes
- Barrel length: standard and short
- Thickness 5.8 mm
- Fixation with locking screws Ø 5.0 mm, cortex screws Ø 4.5 mm or a combination of both
LCP DHS plate with collar
- LCP combi-holes
- Tapered end
- Undercuts
- Barrel angle 135° and 140°
- 3–5 holes
- Barrel length: standard
- Sterile

DHS Trochanter Stabilizing Plate
All DHS Trochanter Stabilizing Plates can be used with the conventional DHS or the LCP DHS plate.

Conventional DHS Trochanter Stabilizing Plate (TSP)
- Lateral support
- Prevents unlimited dynamization
- Allows for the fixation of the upper trochanter with cerclage
- Stainless steel or titanium
- Two lengths: short (138 mm) and long (148 mm)

Locking Trochanter Stabilizing Plate (LTSP)
- Easy to adapt to the anatomical condition
- Fixation of the upper trochanter with locking screws
- Lateral support
- Prevents unlimited dynamization
- Stainless steel or titanium
- Length 130 mm

Universal Locking Trochanteric Stabilizing Plate (ULTSP)
- Easy to adapt to the anatomical condition
- Fixation of the upper trochanter with locking screws
- Lateral support
- Prevents unlimited dynamization
- Stainless steel
- Length 131 mm
System Overview

DCS plate
- With DCP holes
- Stainless steel or TAN
- 6 to 22 holes
- Barrel length: short
- Thickness: 5.4 mm
- Width: 16 mm
- Fixation with cortex screws Ø 4.5 mm

DHS/DCS Compression Screw
Used together with the DHS and DCS plates to compress the femoral fragments on the proximal and distal sides of the fracture.
- Stainless steel or TAN
- Inner hexagon for Hexagonal Screwdriver (314.120 and 314.270)
- Length 36 mm

DHS/DCS Locking Device
Used for locking the sliding mechanism of the DHS Screw or the DHS Blade.
- Stainless steel or TAN
- Inner hexagon for Torque-indicating Screwdriver (338.560)
- Length 35 mm
DHS System. The appropriate solution for proximal femoral fractures.

Modular System

The Dynamic Hip System (DHS) from Synthes consists of the following options:
- DHS Screw or DHS Blade
- Standard plates or LCP plates
- Locking Trochanter Stabilizing Plate (LTSP)

DHS Blade

Increased rotational stability
The shape of the blade leads to improved rotational stability of the femoral head-neck fragment, which is vital for reducing the risk of cut-out, delayed union and varus angulation in unstable trochanteric fractures.1

Better anchorage in the femoral head
The specially designed tip of the blade allows for compaction of the bone when the blade is inserted. This compaction leads to improved anchorage of the implant in the femoral head, which is beneficial especially in osteoporotic bone.2

Increased support surface
The weight-bearing surface of the DHS Blade is greater compared to the surface of the conventional DHS Screw and can therefore take greater loads. A larger surface means less pressure from the implant onto the bone and less risk for cut-out.
Fixation of unstable fractures

- Acts as lateral support.
- Reduces excessive secondary fracture impaction and medialization of the femoral shaft.
- Reduces varus angulation and limb shortening.
- Fixates the greater trochanter, restoring the biomechanical function of the gluteus medius.

Minimally invasive approach

Better fixation on the shaft and lower risk of screw pull out allow for the use of a shorter plate, resulting in:
- Shorter skin incision
- Shorter surgical procedure
- Less blood loss

Optimal fixation on the shaft

- The angular stability prevents the DHS plate from being pulled out.
- Locking screws cannot loosen.

LCP DHS plate

Conventional screws

- Small resistance area

Locking screws

- Bigger resistance area
Indications and Contraindications

DHS

Including all combinations of DHS Screw, DHS Blade, DHS plate with DCP holes, LCP DHS plate and LCP DHS with collar.

Indications DHS

- Pertrochanteric fractures of type 31-A1 and 31-A2
- Intertrochanteric fractures of type 31-A3
- Basilar neck fractures 31-B
 (DHS Screw in conjunction with an antirotation screw)

Contraindications DHS

- Subtrochanteric fractures: for this type of fracture, a 95° DCS plate or the intramedullary nail PFNA Long is recommended.
- The DHS is not to be used in cases where there is a high incidence of:
 - Sepsis
 - Malignant primary or metastatic tumors
 - Material sensitivity
 - Compromised vascularity

Recommendations DHS

- DHS Blade: for osteoporotic patients
- DHS Screw Ø 14 mm: for revisions of DHS Screws Ø 13 mm
- LCP DHS: for the use of shorter plates, especially in the case of femoral neck fractures

Trochanter Stabilizing Plate

Indications LTSP/ULTSP/TSP

- Unstable pertrochanteric fractures of type 31-A2 and 31-A3, especially multifragmentary fractures with a separated or longitudinally split greater trochanter
DCS

Indications DCS
- Proximal femur: Very proximally located, purely subtrochanteric fractures of types 32-A and 32-B
- Distal femur: Fractures of type 33-A (extra-articular, supracondylar) and fractures of type 33-C (fully articular fractures)

Contraindications DCS
- Pertrochanteric fractures or trochanteric fractures with subtrochanteric expansion (31-A3)
Clinical Cases

Pertrochanteric fractures
Special surgical considerations:

- **Implant of choice**
 Recent metaanalysis has shown that the DHS tends to be statistically superior to intramedullary devices for trochanteric fractures.\(^3\)\(^4\) Further studies are required to determine whether different types of intramedullary nails produce similar results, or whether intramedullary nails are advantageous for certain fracture types (e.g. subtrochanteric fractures).\(^4\)

- **Prevention of cut-out: correct placement of the screw**
 The correct placement of the DHS Screw or Blade has shown to be one of the main success factors to prevent implant cut-out. The device should ideally be positioned in a center-center position in the femoral head and within 5 mm of subchondral bone.\(^5\)\(^6\) See surgical technique page 15.

Femoral neck fractures
Special surgical considerations:

- **Implant of choice**
 For unstable basicervical fractures, the DHS seems biomechanically superior to three cannulated screws.\(^7\) Nevertheless, operations of cervical hip fractures with a dynamic hip screw or three parallel screws seem to give similar clinical results.\(^8\)

- **Emergency treatment**
 A femoral neck fracture should be treated surgically within 6 hours of admission whenever possible. Elderly patients who had surgery within 12 hours\(^9\) or even within 24 hours\(^10\) have a significantly lower mortality rate.

- **Antirotation screw for DHS Screw**
 If the DHS Screw is used, an additional antirotation screw should be placed parallel to the DHS Screw. In this case, the DHS Screw needs to be placed more caudally than normal. With the DHS Blade, rotational stability is achieved without an antirotation screw.
Preoperative planning

The size and angle of the plate as well as the length of the DHS Blade or Screw can be determined preoperatively by using the DHS Goniometer (Art. No. 034.000.185).

Important: If the DHS Blade is from 65 to 75 mm, a DHS plate with short barrel should be used to allow for sufficient dynamization.
2

Position patient

Place the patient in a supine position on the operating table.

3

Reduce fracture

If possible, reduce the fracture under the image intensifier by means of traction, abduction and internal rotation.

4

Access

Make a straight lateral skin incision of approximately 15 cm in length, starting two finger-widths proximal to the tip of the greater trochanter.

Split the iliotibial tract lengthwise. Detach the m. vastus lateralis dorsally to the intramuscular membrane, retract ventrally and, if necessary, make a slight notch in the muscle in the region of the innominate tubercle. Expose the proximal femoral shaft without retracting the periosteum.
5

Insert anteversion wire

Instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>292.200</td>
<td>Kirschner Wire Ø 2.0 mm with trocar tip, length 150 mm</td>
</tr>
</tbody>
</table>

Determine the femoral neck anteversion by inserting a new Kirschner wire anterior to the femoral neck.

In the case of unstable fractures, insert several Kirschner wires into the femoral head to temporarily stabilize the reduced fragments.

6

Insert guide wire

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.000</td>
<td>DHS/DCS Guide Wire Ø 2.5 mm</td>
</tr>
<tr>
<td>338.005</td>
<td>DHS Angled Guide 130°</td>
</tr>
<tr>
<td>338.010</td>
<td>DHS Angled Guide 135°</td>
</tr>
<tr>
<td>338.020</td>
<td>DHS Angled Guide 140°</td>
</tr>
<tr>
<td>338.030</td>
<td>DHS Angled Guide 145°</td>
</tr>
<tr>
<td>338.040</td>
<td>DHS Angled Guide 150°</td>
</tr>
</tbody>
</table>

Insert a new DHS/DCS guide wire at the desired angle with the correct angled guide. The guide wire should be placed in the middle of the femoral head and should extend into the subchondral bone.

Check the position of the guide wire in both AP and mediolateral positions.
7

Determine length of DHS Screw / DHS Blade

<table>
<thead>
<tr>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.050</td>
</tr>
<tr>
<td>DHS/DCS Direct Measuring Device</td>
</tr>
</tbody>
</table>

Read the length of the DHS Screw or Blade directly off the guide wire with the measuring device.

If the guide wire is inserted into the subchondral bone remove 10 mm from the measurement.

Example: If you read 110 mm on the direct measuring device, the measured length of the implant is 100 mm.
8
Ream for insertion of DHS Screw / DHS Blade

A Instruments for DHS Screw

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.130</td>
<td>DHS Triple Reamer, complete</td>
</tr>
</tbody>
</table>

Consisting of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.100</td>
<td>Drill Bit ∅ 8.0 mm</td>
</tr>
<tr>
<td>338.110</td>
<td>DHS Reamer</td>
</tr>
<tr>
<td>338.120</td>
<td>Nut, knurled</td>
</tr>
</tbody>
</table>

Alternative instrument for short barrel plates (for DHS screw/blade ≤ 75 mm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.440</td>
<td>DHS Reamer</td>
</tr>
</tbody>
</table>

B Instruments for DHS Blade

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.224.009</td>
<td>Triple Reamer for DHS Blade, complete</td>
</tr>
</tbody>
</table>

Consisting of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.224.003</td>
<td>Drill Bit ∅ 6.0/10.5 mm</td>
</tr>
<tr>
<td>338.110</td>
<td>DHS Reamer</td>
</tr>
<tr>
<td>338.120</td>
<td>Nut, knurled</td>
</tr>
</tbody>
</table>

Alternative instrument for short barrel plates (for DHS screw/blade ≤ 75 mm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.440</td>
<td>DHS Reamer</td>
</tr>
</tbody>
</table>

Assemble the triple reamer. Slide the reamer over the drill bit until it clicks into place.

Set the triple reamer at the length of the implant selected. (100 mm in the example)

Secure the reamer by tightening the knurled nut.
Reinsertion of the guide wire

If the guide wire is removed accidentally it should be reinserted. To reinsert the wire push the centering sleeve into the reamed hole and slide an inverted DHS Screw or DHS Blade into the sleeve. The guide wire can now be replaced in its original position.

Ream down to the stop. When reaming in dense bone, use of continuous irrigation is recommended to prevent thermal necrosis.

Control guide wire migration during reaming. Remove triple reamer.

Check reaming depth under fluoroscopy during reaming.

Important: It is recommended that the femoral head is temporarily fixated to prevent any inadvertent rotation.
9a
Tap for DHS Screw

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.320</td>
<td>DHS/DCS Centering Sleeve</td>
</tr>
<tr>
<td>338.170</td>
<td>DHS/DCS Tap</td>
</tr>
</tbody>
</table>

Mount the centering sleeve from the side onto the tap and lock it into place by turning the inner sleeve clockwise against the outer sleeve.

Tap to the measured length. Check insertion depth.

Warning: Tap only dense, hard femoral bone. Do not tap osteoporotic bone.

Note: For the standard insertion technique, consult the quick step technique guide 035.000.080 (9a–11).
10a
Screw in DHS Screw

Instruments

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.310</td>
<td>Connecting Screw</td>
</tr>
<tr>
<td>338.300</td>
<td>DHS/DCS Wrench for One-Step Insertion Technique</td>
</tr>
<tr>
<td>or 338.302</td>
<td>DHS/DCS Wrench for One-Step Insertion with octagonal coupling</td>
</tr>
<tr>
<td>338.320</td>
<td>DHS/DCS Centering Sleeve</td>
</tr>
</tbody>
</table>

Insert the connecting screw into the wrench, slide an appropriate DHS plate onto it and connect the DHS Screw to the wrench. For DHS screws shorter than or equal to 75 mm, take a DHS plate with short barrel. Mount the centering sleeve onto the wrench.

Warning: To avoid damaging the instruments and the implant, tighten the connecting screw securely.

Slide the assembled instrument over the guide wire and push the centering sleeve into the pre-drilled hole.

Insert the screw to the desired depth.

Turn the handle of the wrench until it lies in the same plane as the femoral shaft. Only in this position can the plate be slid over the laterally flattened shank of the DHS Screw.

Check insertion depth.
9b
Hammer in the DHS Blade

<table>
<thead>
<tr>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.224.001 Insertion Instrument for DHS Blade</td>
</tr>
<tr>
<td>03.224.007 Connecting Screw for Insertion of DHS Blade</td>
</tr>
<tr>
<td>338.320 DHS/DCS Centering Sleeve</td>
</tr>
</tbody>
</table>

Insert the connecting screw into the insertion instrument. Slide the appropriate DHS plate onto the insertion instrument and connect the DHS Blade to the insertion instrument. For DHS blades shorter than or equal to 75 mm, take a DHS plate with short barrel.

Warning: Be sure that the DHS Blade is unlocked before you insert it.

Mount the centering sleeve onto the insertion instrument and insert the DHS Blade with slight hammering.

Check insertion depth.

Warning: The insertion instrument should not be used for the extraction of the DHS Blade.
10b

Orient the DHS plate on the femoral shaft

Once the DHS Blade has been inserted to the correct position, the centering sleeve can be removed. The plate can then be slid over the shaft of the DHS Blade.

Due to the free rotation of the blade part relative to the shaft part, the DHS plate can be easily aligned to the femoral shaft.

11

Impact DHS plate onto the bone

Instruments

<table>
<thead>
<tr>
<th>338.280</th>
<th>DHS/DCS Impactor, for One-Step Insertion Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>338.140</td>
<td>DHS/DCS Impactor</td>
</tr>
</tbody>
</table>

The plate can be impacted onto the bone with one of the two impactors.
Fix the DHS plate onto the shaft

Remove all the insertion instruments and the guide wire. Discard the guide wire. Then fix the plate to the femoral shaft.

A Cortex screws for the conventional DHS plate

<table>
<thead>
<tr>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.460</td>
</tr>
<tr>
<td>310.310</td>
</tr>
<tr>
<td>319.010</td>
</tr>
<tr>
<td>314.150</td>
</tr>
</tbody>
</table>

Use the drill guide and the drill bit to drill holes in a neutral position through the plate holes. Insert self-tapping 4.5 mm cortex screws of appropriate length.
B Locking screws for the LCP DHS plate

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.042</td>
<td>LCP Drill Sleeve 5.0, for Drill Bits Ø 4.3 mm</td>
</tr>
<tr>
<td>310.430</td>
<td>LCP Drill Bit Ø 4.3 mm with Stop</td>
</tr>
<tr>
<td>511.771 or 511.774</td>
<td>Torque Limiter, 4.0 Nm</td>
</tr>
<tr>
<td>314.119</td>
<td>Screwdriver Shaft Stardrive 4.5/5.0, T25, self-holding</td>
</tr>
<tr>
<td>or 314.152</td>
<td>Screwdriver Shaft 3.5, hexagonal, self-holding</td>
</tr>
<tr>
<td>397.705</td>
<td>Handle for Torque Limiter</td>
</tr>
</tbody>
</table>

Carefully screw the LCP drill sleeve into the desired LCP hole until it is gripped completely by the thread.

Drill the screw hole using the drill bit.

Read the screw length directly from the laser mark on the drill bit.

Insert the 5.0 mm self-tapping locking screws with a 4 Nm torque limiter.

In case a trochanter stabilizing plate is used
- Use a plate with 4 or more holes.
- Leave the first and the third stem hole of the plate empty.
13
Only for DHS Blade: lock the implant

Instruments

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.224.004</td>
<td>Screwdriver Shaft Stardrive, T15</td>
</tr>
<tr>
<td>511.770</td>
<td>Torque Limiter, 1.5 Nm</td>
</tr>
<tr>
<td>397.705</td>
<td>Handle for Torque Limiter</td>
</tr>
</tbody>
</table>

The DHS Blade must be locked to be made rotationally stable.
Assemble the screwdriver shaft, torque limiter and the handle for torque limiter.
Insert the assembled instrument through the cannulation of the DHS Blade and tighten to a torque of 1.5 Nm. Turn the screwdriver clockwise to lock the blade. The DHS Blade is now rotationally stable.

14
Option for DHS Screw: DHS/DCS compression screw

Instruments

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X80.990</td>
<td>DHS/DCS Compression Screw</td>
</tr>
<tr>
<td>314.150</td>
<td>Screwdriver Shaft, hexagonal</td>
</tr>
</tbody>
</table>

X=2: stainless steel
X=4: TAN

Fragment compression may also be achieved using DHS/DCS compression screws.

Warning: It is not recommended that compression should be applied in osteoporotic bone.
15
Option for young patients: block the dynamization

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X80.960</td>
<td>DHS Locking Device</td>
</tr>
<tr>
<td>511.774</td>
<td>Torque Limiter, 4 Nm</td>
</tr>
<tr>
<td>314.150</td>
<td>Screwdriver Shaft, hexagonal</td>
</tr>
<tr>
<td>397.706</td>
<td>Handle for Torque Limiter</td>
</tr>
</tbody>
</table>

X=2: stainless steel
X=4: TAN

The DHS locking device can be used in young patients to prevent the dynamization of the DHS Screw. This avoids any shortening of the leg.

Warning

– The device must not be used in osteoporotic patients, due to the increased risk of cut out.
– The locking device also fits into the DHS Blade. The DHS Blade is not, however, indicated for young patients.

The DHS Screw chosen must be 10 mm shorter than the length of the reamed hole.

Example

– Measurement: 110 mm
– Reaming setting: 100 mm
– Screw length: 90 mm

The DHS Screw must then be advanced 10 mm deeper. Insert the locking device with a 4 Nm torque limiting screwdriver. The device only works properly if it is completely inserted into the DHS plate barrel.
Removal of DHS with DHS Screw

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.060</td>
<td>DHS/DCS Wrench</td>
</tr>
<tr>
<td>338.220</td>
<td>Connecting Screw, long</td>
</tr>
</tbody>
</table>

After removing the DHS plate, attach the wrench to the end of the DHS Screw using the connecting screw.

Warning: Never use the insertion instruments for implant removal.

The wrench and connecting screw must fit the DHS Screw exactly. The connecting screw must be tightened securely.
B

Removal of DHS with DHS Blade

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.224.005</td>
<td>Extraction Instrument for DHS Blade</td>
</tr>
<tr>
<td>03.224.008</td>
<td>Connecting Screw for Extraction of DHS Blade</td>
</tr>
<tr>
<td>03.010.124</td>
<td>Combined Hammer 500 g</td>
</tr>
</tbody>
</table>

After removing the DHS plate, place the connecting screw through the cannulation of the extraction instrument and fix it to the DHS Blade. The blade is then removed with soft backward slide hammering on the extraction instrument.

Warning: Never use the insertion instruments for implant removal.

Bone growth around the shaft

Instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.224.006</td>
<td>Reamer for Extraction of DHS Blade</td>
</tr>
</tbody>
</table>

If removal of blade is difficult due to bone growth around the shaft, use the reamer for extraction to drill over the shaft of the DHS Blade.
The Locking Trochanter Stabilizing Plate (LTSP) and the Universal Trochanteric Stabilizing Plate (ULTSP) can only be used in combination with the DHS / LCP DHS plate.

1 Adjust the LTSP/ULTSP

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.151</td>
<td>Cutting Pliers with Positioning Pin Ø 3.0 mm</td>
</tr>
<tr>
<td>329.513</td>
<td>Bending Template</td>
</tr>
<tr>
<td>329.050</td>
<td>Bending Iron for Plates 2.4 to 3.5</td>
</tr>
</tbody>
</table>

Before fixing the LTSP/ULTSP over the DHS plate, use the appropriate instruments to cut and bend the plate to adapt it to the specific anatomical configurations. Temporarily position the bending template over the greater trochanter to verify both length and contour of the plate.

Cutting: To avoid sharp edges, use the cutting pliers with positioning pin. Place the plate into the jaws of the cutter as shown.

Bending: The area around the hole for the antirotation screw is bent best with bending irons. Use the bending template to preshape the LTSP/ULTSP.
2
Fix the LTSP/ULTSP onto the DHS plate

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.460</td>
<td>Universal Drill Guide 4.5/3.2</td>
</tr>
<tr>
<td>310.310</td>
<td>Drill Bit Ø 3.2 mm</td>
</tr>
<tr>
<td>319.010</td>
<td>Depth Gauge</td>
</tr>
</tbody>
</table>

When fixing the DHS plate with cortex screws, do not occupy the first and the third proximal hole so that the LTSP/ULTSP can be secured through these two holes.

Insert self-tapping 4.5 mm cortex screws through the two remaining open holes of the DHS plate to fix the LTSP/ULTSP.

Note regarding LCP DHS plate: Use conventional 4.5 mm cortex screws to fix the LTSP/ULTSP onto the LCP DHS plate.
3
For DHS Screw only: place the antirotation screw

Instruments and implants

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.750</td>
<td>DHS Parallel Drill Guide</td>
</tr>
<tr>
<td>X80.990</td>
<td>DHS/DCS Compression Screw</td>
</tr>
</tbody>
</table>

for 6.5 mm Cancellous Bone Screw

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.310</td>
<td>Drill Bit \varnothing 3.2 mm</td>
</tr>
</tbody>
</table>

for 6.5 mm Cannulated Screw

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.731</td>
<td>Drill Sleeve 4.5/2.8</td>
</tr>
<tr>
<td>338.740</td>
<td>Drill Sleeve 6.0/4.5</td>
</tr>
<tr>
<td>310.630</td>
<td>Drill Bit \varnothing 5.0 mm, cannulated</td>
</tr>
<tr>
<td>292.680</td>
<td>Guide Wire \varnothing 2.8 mm with threaded tip with trocar</td>
</tr>
</tbody>
</table>

Use the parallel drill guide and the required drill sleeves to place the antirotation screw cranially and parallel to the DHS Screw.

Notes
- Alternate between tightening the antirotation screw and
- if used – the DHS/DCS compression screw to ensure an even compression of the fracture.
- If a DHS Blade is used, the use of an antirotation screw is not necessary.
4
Final adjustment

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.916 Bending Pin for LCP Plates 3.5, with thread</td>
<td></td>
</tr>
<tr>
<td>323.027 LCP Drill Sleeve 3.5, for Drill Bits Ø 2.8 mm</td>
<td></td>
</tr>
</tbody>
</table>

Fine bending may be achieved in situ with the bending pin or with the threaded LCP drill sleeve. Apply small incremental force to achieve the required bending.
5
Fix the locking screws

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.027</td>
<td>LCP Drill Sleeve 3.5, for Drill Bits (\varnothing 2.8 \text{ mm})</td>
</tr>
<tr>
<td>310.284</td>
<td>LCP Drill Bit (\varnothing 2.8 \text{ mm with Stop})</td>
</tr>
<tr>
<td>397.705</td>
<td>Handle for Torque Limiter</td>
</tr>
<tr>
<td>511.770</td>
<td>Torque Limiter, 1.5 Nm</td>
</tr>
<tr>
<td>314.116</td>
<td>Screwdriver Shaft Stardrive 3.5, T15</td>
</tr>
<tr>
<td>314.030</td>
<td>Screwdriver Shaft, hexagonal</td>
</tr>
</tbody>
</table>

To fix the trochanter fragments with 3.5 mm locking screws, thread the LCP drill sleeve into the threaded plate hole until seated.

Use the drill bit through the threaded drill sleeve to drill through the cortex. As the screws are used monocortically, a screw length between 20 and 25 mm is sufficient. Use a 1.5 Nm torque limiter to insert the screws.

The locking screws should not be too long to avoid any impaired dynamization of the DHS Screw or Blade.

Notes

- Highly comminuted trochanteric fractures should be fixed as a functional entity rather than attempting a reduction of every single fragment.
- The objective of the cranial and oblique locking screws is:
 - to counteract the tension forces of the gluteus medius.
 - to gather and impact the various fragments of the trochanteric fracture into one another.
LTSP and ULTSP Removal

Remove the implants in the following sequence:
– All fixation elements (screws, wire, cable, suture) attached to the LTSP/ULTSP
– Antirotation screw (if used)
– Trochanter Stabilizing Plate (LTSP or ULTSP)
– Compression screw or locking device
– LCP DHS plate or conventional DHS plate
– DHS Screw or DHS Blade

Note: The technique for the conventional TSP is similar to the LTSP and ULTSP. Bending is achieved with bending irons. Instead of locking screws, conventional cortex screws are inserted in the plate head.
The DCS initially designed for fractures of the lower femur can also be used in certain fractures of the proximal femur. It is a non-gliding implant and the mechanical principle is that of an external tension band.

1
Insert guide wire

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.000 DHS/DCS Guide Wire ø 2.5 mm</td>
<td></td>
</tr>
<tr>
<td>338.420 DCS Angled Guide</td>
<td></td>
</tr>
<tr>
<td>338.080 DHS/DCS T-Handle with Quick Coupling</td>
<td></td>
</tr>
</tbody>
</table>

Determine entry point in the proximal femur: Select the entry point at the union one third ventral and two thirds caudal from the greater trochanter.

Insert the DHS/DCS guide wire at the correct angle with the DCS angled guide. Check the position of the guide wire in both AP and mediolateral positions.
2
Measure the length of the guide wire

<table>
<thead>
<tr>
<th>Instrument</th>
<th>DHS/DCS Direct Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.050</td>
<td></td>
</tr>
</tbody>
</table>

Slide the direct measuring device over the guide wire and determine the length (in this example 80 mm).
3 Reaming

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.170</td>
<td>DHS/DCS Tap</td>
</tr>
<tr>
<td>338.320</td>
<td>DHS/DCS Centering Sleeve</td>
</tr>
<tr>
<td>338.460</td>
<td>DCS Triple Reamer, complete</td>
</tr>
</tbody>
</table>

Consisting of:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.100</td>
<td>Drill Bit ø 8.0 mm</td>
</tr>
<tr>
<td>338.120</td>
<td>Nut, knurled</td>
</tr>
<tr>
<td>338.470</td>
<td>DCS Reamer</td>
</tr>
</tbody>
</table>

Adjust the reaming depth on the triple reamer. The appropriate reaming depth is 10 mm shorter than the measured length of the guide wire (i.e. 80 mm – 10 mm = 70 mm).

Assemble the triple reamer: Slide the reamer over the drill bit until it clicks into place at the selected mark (in this example at 70 mm).

Secure the reamer by tightening the knurled nut.

Ream down to the stop.

Control guide wire migration during reaming.

Remove the DCS triple reamer.

Note: Check that “DCS” is marked on the reamer to avoid any mix-up with the DHS triple reamer.

Option: If the bone is hard, tap the thread using the tap and the centering sleeve. Tap the thread until the selected depth in the small window of the centering sleeve reaches the lateral cortex (in this example 70 mm).

Warning: The tap may not be used in osteoporotic bone.
4

Insert DHS/DCS screw and plate

Once the screw has been inserted and the plate impacted, fix it to the epiphysis with a screw resting against the internal cortex of the neck by means of a gliding hole.

Reduce the subtrochanteric fracture applying the plate on the femoral diaphysis.

Contact at the fracture site can be improved by inserting one or two lag screws. Perform the final fixation of the plate on the femur using self-tapping 4.5 mm cortex screws.
Remove the implants in the following sequence:
– DCS plate
– DHS/DCS Screw

Please also refer to DHS implant removal, page 26.
DHS/DCS Screw

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Standard recess D = 13 mm</th>
<th>Octagonal recess D = 13 mm</th>
<th>Standard recess D = 14 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>280.501</td>
<td>280.251</td>
<td>480.500</td>
</tr>
<tr>
<td>55</td>
<td>280.550</td>
<td>280.255</td>
<td>480.550</td>
</tr>
<tr>
<td>60</td>
<td>280.600</td>
<td>280.260</td>
<td>480.600</td>
</tr>
<tr>
<td>65</td>
<td>280.650</td>
<td>280.265</td>
<td>480.650</td>
</tr>
<tr>
<td>70</td>
<td>280.700</td>
<td>280.270</td>
<td>480.700</td>
</tr>
<tr>
<td>75</td>
<td>280.750</td>
<td>280.275</td>
<td>480.750</td>
</tr>
<tr>
<td>80</td>
<td>280.800</td>
<td>280.280</td>
<td>480.800</td>
</tr>
<tr>
<td>85</td>
<td>280.850</td>
<td>280.285</td>
<td>480.850</td>
</tr>
<tr>
<td>90</td>
<td>280.900</td>
<td>280.290</td>
<td>480.900</td>
</tr>
<tr>
<td>95</td>
<td>280.950</td>
<td>280.295</td>
<td>480.950</td>
</tr>
<tr>
<td>100</td>
<td>280.000</td>
<td>280.301</td>
<td>480.000</td>
</tr>
<tr>
<td>105</td>
<td>280.050</td>
<td>280.305</td>
<td>480.050</td>
</tr>
<tr>
<td>110</td>
<td>280.100</td>
<td>280.310</td>
<td>480.100</td>
</tr>
<tr>
<td>115</td>
<td>280.150</td>
<td>280.315</td>
<td>480.150</td>
</tr>
<tr>
<td>120</td>
<td>280.200</td>
<td>280.320</td>
<td>480.200</td>
</tr>
<tr>
<td>125</td>
<td>280.250</td>
<td>280.325</td>
<td>480.250</td>
</tr>
<tr>
<td>130</td>
<td>280.300</td>
<td>280.330</td>
<td>480.300</td>
</tr>
<tr>
<td>135</td>
<td>280.350</td>
<td>280.335</td>
<td>480.350</td>
</tr>
<tr>
<td>140</td>
<td>280.400</td>
<td>280.340</td>
<td>480.400</td>
</tr>
<tr>
<td>145</td>
<td>280.451</td>
<td>280.345</td>
<td>480.450</td>
</tr>
</tbody>
</table>

Important: DHS screws from 50–75 mm must be used with a DHS plate with short barrel.

All DHS/DCS Screws are available nonsterile and sterile packed. For sterile implants add suffix S to article number.
DHS Blade Ø 12.5 mm

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0X.224.065S</td>
<td>65</td>
</tr>
<tr>
<td>0X.224.070S</td>
<td>70</td>
</tr>
<tr>
<td>0X.224.075S</td>
<td>75</td>
</tr>
<tr>
<td>0X.224.080S</td>
<td>80</td>
</tr>
<tr>
<td>0X.224.085S</td>
<td>85</td>
</tr>
<tr>
<td>0X.224.090S</td>
<td>90</td>
</tr>
<tr>
<td>0X.224.095S</td>
<td>95</td>
</tr>
<tr>
<td>0X.224.100S</td>
<td>100</td>
</tr>
<tr>
<td>0X.224.105S</td>
<td>105</td>
</tr>
<tr>
<td>0X.224.110S</td>
<td>110</td>
</tr>
<tr>
<td>0X.224.115S</td>
<td>115</td>
</tr>
<tr>
<td>0X.224.120S</td>
<td>120</td>
</tr>
<tr>
<td>0X.224.125S</td>
<td>125</td>
</tr>
<tr>
<td>0X.224.130S</td>
<td>130</td>
</tr>
<tr>
<td>0X.224.135S</td>
<td>135</td>
</tr>
<tr>
<td>0X.224.140S</td>
<td>140</td>
</tr>
<tr>
<td>0X.224.145S</td>
<td>145</td>
</tr>
</tbody>
</table>

X = 2: stainless steel
X = 4: TAN

The DHS Blade is only available sterile packed.

Important: DHS Blades from 65 to 75 mm must be used with the DHS plate with short barrel.
DHS plates with DCP holes

with standard barrel

<table>
<thead>
<tr>
<th>Holes</th>
<th>(\alpha = 130^\circ)</th>
<th>(\alpha = 135^\circ)</th>
<th>(\alpha = 140^\circ)</th>
<th>(\alpha = 145^\circ)</th>
<th>(\alpha = 150^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>281.021*</td>
<td>281.102*</td>
<td>X81.220</td>
<td>X81.320</td>
<td>281.402*</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>481.120</td>
<td>–</td>
<td>–</td>
<td>481.420</td>
</tr>
<tr>
<td>3</td>
<td>281.031*</td>
<td>281.131*</td>
<td>X81.230</td>
<td>X81.330</td>
<td>X81.430</td>
</tr>
<tr>
<td>4</td>
<td>X81.040</td>
<td>X81.140</td>
<td>X81.240</td>
<td>X81.340</td>
<td>X81.440</td>
</tr>
<tr>
<td>5</td>
<td>281.050*</td>
<td>X81.150</td>
<td>X81.250</td>
<td>X81.350</td>
<td>X81.450</td>
</tr>
<tr>
<td>6</td>
<td>X81.060</td>
<td>X81.160</td>
<td>X81.260</td>
<td>X81.360</td>
<td>X81.460</td>
</tr>
<tr>
<td>8</td>
<td>281.081*</td>
<td>X81.180</td>
<td>281.280*</td>
<td>281.380*</td>
<td>X81.480</td>
</tr>
<tr>
<td>10</td>
<td>281.010*</td>
<td>X81.100</td>
<td>281.200*</td>
<td>281.310*</td>
<td>X81.400</td>
</tr>
<tr>
<td>12</td>
<td>281.012*</td>
<td>281.110*</td>
<td>281.212*</td>
<td>281.312*</td>
<td>281.410*</td>
</tr>
<tr>
<td>14</td>
<td>281.014*</td>
<td>281.130*</td>
<td>281.214*</td>
<td>281.314*</td>
<td>281.414*</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>281.170*</td>
<td>281.216*</td>
<td>281.316*</td>
<td>281.416*</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>281.190*</td>
<td>–</td>
<td>–</td>
<td>281.418*</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>281.020*</td>
<td>–</td>
<td>–</td>
<td>281.421*</td>
</tr>
</tbody>
</table>

with short barrel

<table>
<thead>
<tr>
<th>Holes</th>
<th>(\alpha = 130^\circ)</th>
<th>(\alpha = 135^\circ)</th>
<th>(\alpha = 140^\circ)</th>
<th>(\alpha = 145^\circ)</th>
<th>(\alpha = 150^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>281.502*</td>
<td>281.520*</td>
<td>281.620*</td>
<td>281.720*</td>
<td>281.820*</td>
</tr>
<tr>
<td>3</td>
<td>281.503*</td>
<td>281.530*</td>
<td>281.630*</td>
<td>281.730*</td>
<td>281.830*</td>
</tr>
<tr>
<td>4</td>
<td>281.504*</td>
<td>X81.540</td>
<td>281.640*</td>
<td>281.740*</td>
<td>281.840*</td>
</tr>
<tr>
<td>5</td>
<td>281.505*</td>
<td>X81.550</td>
<td>281.650*</td>
<td>281.750*</td>
<td>281.850*</td>
</tr>
<tr>
<td>6</td>
<td>281.506*</td>
<td>X81.560</td>
<td>281.660*</td>
<td>281.760*</td>
<td>281.860*</td>
</tr>
</tbody>
</table>

* Only available in stainless steel

X=2: stainless steel
X=4: TAN

Important: Use short barrel DHS plates only with DHS screws/blades shorter or equal 75 mm.

All plates are available nonsterile and sterile packed.
For sterile implants add suffix S to article number.
LCP DHS plates

with standard barrel

<table>
<thead>
<tr>
<th>Holes</th>
<th>$\alpha = 130^\circ$</th>
<th>$\alpha = 135^\circ$</th>
<th>$\alpha = 140^\circ$</th>
<th>$\alpha = 145^\circ$</th>
<th>$\alpha = 150^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0X.224.202</td>
<td>0X.224.222</td>
<td>0X.224.242</td>
<td>0X.224.262</td>
<td>0X.224.282</td>
</tr>
<tr>
<td>3</td>
<td>0X.224.203</td>
<td>0X.224.223</td>
<td>0X.224.243</td>
<td>0X.224.263</td>
<td>0X.224.283</td>
</tr>
<tr>
<td>4</td>
<td>0X.224.204</td>
<td>0X.224.224</td>
<td>0X.224.244</td>
<td>0X.224.264</td>
<td>0X.224.284</td>
</tr>
<tr>
<td>5</td>
<td>0X.224.205</td>
<td>0X.224.225</td>
<td>0X.224.245</td>
<td>0X.224.265</td>
<td>0X.224.285</td>
</tr>
<tr>
<td>6</td>
<td>0X.224.206</td>
<td>0X.224.226</td>
<td>02.224.246*</td>
<td>02.224.266*</td>
<td>0X.224.286</td>
</tr>
<tr>
<td>8</td>
<td>02.224.208*</td>
<td>0X.224.228</td>
<td>02.224.248*</td>
<td>02.224.268*</td>
<td>0X.224.288</td>
</tr>
<tr>
<td>10</td>
<td>02.224.210*</td>
<td>02.224.230*</td>
<td>02.224.250*</td>
<td>02.224.270*</td>
<td>02.224.290*</td>
</tr>
<tr>
<td>12</td>
<td>02.224.212*</td>
<td>02.224.232*</td>
<td>02.224.252*</td>
<td>02.224.272*</td>
<td>02.224.292*</td>
</tr>
<tr>
<td>14</td>
<td>02.224.214*</td>
<td>02.224.234*</td>
<td>02.224.254*</td>
<td>02.224.274*</td>
<td>02.224.294*</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>02.224.236*</td>
<td>02.224.256*</td>
<td>02.224.276*</td>
<td>02.224.296*</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>02.224.298*</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>02.224.240*</td>
<td>–</td>
<td>–</td>
<td>02.224.299*</td>
</tr>
</tbody>
</table>

* Only available in stainless steel

with short barrel

<table>
<thead>
<tr>
<th>Holes</th>
<th>$\alpha = 130^\circ$</th>
<th>$\alpha = 135^\circ$</th>
<th>$\alpha = 140^\circ$</th>
<th>$\alpha = 145^\circ$</th>
<th>$\alpha = 150^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0X.224.302</td>
<td>0X.224.322</td>
<td>0X.224.342</td>
<td>0X.224.362</td>
<td>0X.224.382</td>
</tr>
<tr>
<td>4</td>
<td>0X.224.304</td>
<td>0X.224.324</td>
<td>0X.224.344</td>
<td>0X.224.364</td>
<td>0X.224.384</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>0X.224.325</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>0X.224.326</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

X=2: stainless steel
X=4: TAN

Important: Use short barrel LCP DHS plates only with DHS screws/blades shorter or equal 75 mm.

All plates are available nonsterile and sterile packed.
For sterile implants add suffix S to article number.
LCP DHS plates with collar

<table>
<thead>
<tr>
<th>Holes</th>
<th>θ = 135°</th>
<th>θ = 140°</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>04.120.203S</td>
<td>04.120.303S</td>
</tr>
<tr>
<td>4</td>
<td>04.120.204S</td>
<td>04.120.304S</td>
</tr>
<tr>
<td>5</td>
<td>0X.120.205S</td>
<td>04.120.305S</td>
</tr>
</tbody>
</table>
DHS Trochanter Stabilizing Plates

Conventional DHS Trochanter Stabilizing Plates

- X81.869 length 138 mm
- X81.870 length 147 mm

Locking Trochanter Stabilizing Plate: X81.871

- X=2: stainless steel
- X=4: titanium

Universal Locking Trochanteric Stabilizing Plate: 02.102.001

3.5 mm Locking Screws, self-tapping

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Hex</th>
<th>Stardrive</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>X13.016</td>
<td>X12.104</td>
</tr>
<tr>
<td>20</td>
<td>X13.020</td>
<td>X12.106</td>
</tr>
<tr>
<td>24</td>
<td>X13.024</td>
<td>X12.108</td>
</tr>
</tbody>
</table>

- X=2: stainless steel
- X=4: TAN

All plates and screws are available nonsterile and sterile packed. For sterile implants add suffix S to article number.
5.0 mm Locking Screws, self-tapping

X=2: stainless steel
X=4: TAN

All screws are available nonsterile and sterile packed. For sterile implants add suffix S to article number.

4.5 mm Cortex Screws, self-tapping
(X14. 814 – X14. 940)

X=2: stainless steel
X=4: TAN

All plates and screws are available nonsterile and sterile packed. For sterile implants add suffix S to article number.

6.5 mm Cancellous Bone Screws

<table>
<thead>
<tr>
<th>Size</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 mm</td>
<td>X16.030 – 120</td>
</tr>
<tr>
<td>32 mm</td>
<td>X17.045 – 150</td>
</tr>
<tr>
<td>Full thread</td>
<td>X18.020 – 110</td>
</tr>
</tbody>
</table>

X=2: stainless steel
X=4: TAN

All plates and screws are available nonsterile and sterile packed. For sterile implants add suffix S to article number.

6.5 mm Cannulated Screws, self-drilling

<table>
<thead>
<tr>
<th>Size</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 mm</td>
<td>X08.401 – 425</td>
</tr>
<tr>
<td>32 mm</td>
<td>X08.431 – 452</td>
</tr>
<tr>
<td>Full thread</td>
<td>X08.460 – 482</td>
</tr>
</tbody>
</table>

X=2: stainless steel
X=4: TAN

All plates and screws are available nonsterile and sterile packed. For sterile implants add suffix S to article number.
Implants

DCS plate 95°

<table>
<thead>
<tr>
<th>Holes</th>
<th>Stainless steel</th>
<th>TAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>281.960</td>
<td>481.960</td>
</tr>
<tr>
<td>8</td>
<td>281.980</td>
<td>481.980</td>
</tr>
<tr>
<td>10</td>
<td>281.900</td>
<td>481.900</td>
</tr>
<tr>
<td>12</td>
<td>281.925</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>281.930</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>281.940</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>281.950</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>281.970</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>281.990</td>
<td></td>
</tr>
</tbody>
</table>

DHS/DCS Compression Screw

280.990: stainless steel
480.990: TAN

DHS/DCS Locking Device

280.960: stainless steel
480.960: TAN

All implants are available nonsterile and sterile packed.
For sterile implants add suffix S to article number.
Sets

DHS Blade

Implant Set for DHS Blades, in suitcase for sterile implants

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.224.802</td>
<td>stainless steel</td>
</tr>
<tr>
<td>01.224.804</td>
<td>titanium alloy / TAN</td>
</tr>
<tr>
<td>DEM.000.305</td>
<td>Suitcase for DHS Blades</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.224.800</td>
<td>Instrument Set for DHS Blades in Vario Case</td>
</tr>
<tr>
<td>68.224.000</td>
<td>Vario Case for DHS Blade</td>
</tr>
</tbody>
</table>
LCP DHS

LCP DHS Implant Set in Vario Case

<table>
<thead>
<tr>
<th>Code</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.120.012</td>
<td>stainless steel</td>
</tr>
<tr>
<td>01.120.014</td>
<td>titanium alloy / TAN</td>
</tr>
</tbody>
</table>

01.120.010 LCP DHS Basic Instrument Set in Vario Case

01.120.011 LCP DHS Basic Instrument Set for One-step Insertion Technique in Vario Case
Locking Trochanter Stabilizing Plates

01.102.802 Instruments for locking Trochanter Stabilizing Plate, for DHS, Stainless Steel
01.102.804 Instruments for locking Trochanter Stabilizing Plate, for DHS, Pure Titanium
01.102.812 Instruments for locking Trochanter Stabilizing Plate, for DHS, Stardrive, Stainless Steel
01.102.814 Instruments for locking Trochanter Stabilizing Plate, for DHS, Stardrive, Pure Titanium

DHS

181.360 DHS Implant Set in Vario Case
681.360 Vario Case for DHS Implants

DCS

181.365 DCS Implant Set in Vario Case
681.365 Vario Case for DCS Implants

