Reamer/Irrigator/Aspirator (RIA).
For intramedullary reaming and bone harvesting.
Table of contents

Introduction

- Overview 2
- Indications 4

Surgical Technique

- Preparation 5
- Assembly 10
- Reaming 19
- Bone harvesting 21
- Disassembly 24

Product Information

- Single-patient-use instruments 25
- Other material 27
- General instruments 28
- Optional instruments 30
- Other accessory instruments 31
- Power Equipment 32
- Cleaning instruments 33
- Set List 33

Bibliography 34

Warning
This description is not sufficient for immediate application of the instrumentation. Instruction by a surgeon experienced in handling this instrumentation is highly recommended.

Reprocessing, Care and Maintenance of Synthes Instruments
For general guidelines, function control and dismantling of multipart instruments please refer to:
www.synthes.com/reprocessing
Overview

Reaming with lowered risk of systemic complication

- Lower intramedullary pressure
- Lower fat embolisation
- Lower heat generated
- Removal of infected tissue

Fast, efficient reaming

- Time saving, one-step procedure
- Easier handling
- Sharp reamer heads for optimized cutting

Reamer head

Tube assembly

Flow of irrigating fluid
Bone marrow, morselized bone

Constant cooling with irrigation fluid, also emulsifies reamings for easy evacuation

Removal of marrow and bone through aspiration holes creates negative intramedullary pressure

Sharp edges for optimized cutting

Deep flutes to prevent clogging
Autograft harvesting

- Low morbidity
- Possible range: 30 to 80cc per procedure
- Easy, well-known technique
- Osteoinductive and osteogenic

Locking clip
Drive shaft
Drive shaft seal

Aspiration of bone marrow and finely morselized bone
Gravity fed irrigation into cannulation of drive shaft

Graft filter 100cc capacity
Mesh sized to capture morselized bone and bone marrow

Aspiration tube connected to vacuum source
Indications

– To clear the medullary canal of bone marrow and reaming debris
– To clear the medullary canal of infected bone tissue
– To effectively size the medullary canal for the acceptance of an intramedullary implant or prosthesis
– To harvest finely morselized autogenous bone and bone marrow for any surgical procedures that require bone graft in order to facilitate fusion and/or fill bone defects. These procedures include spinal fusion, joint arthrodesis, total joint replacement, fracture repair, nonunion, maxillofacial reconstruction, and tumor removal

Note: When deciding on bone harvesting, the patient’s history, bone quality, physiological condition and compliance must be taken into account.
Preparation

1
Select appropriate length of tube assembly

<table>
<thead>
<tr>
<th>Intruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.745S</td>
<td>RIA Tube Assembly, for RIA Drive Shaft of length 360mm, for No. 314.742, sterile</td>
</tr>
<tr>
<td>314.746S</td>
<td>RIA Tube Assembly, for RIA Drive Shaft of length 520mm, for No. 314.743, sterile</td>
</tr>
</tbody>
</table>

Select the appropriate length of the RIA tube assembly based on the length of the canal.

<table>
<thead>
<tr>
<th>Length of the canal</th>
<th>Tube assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 350 mm</td>
<td>360 mm</td>
</tr>
<tr>
<td>Greater than 350 mm</td>
<td>520 mm</td>
</tr>
</tbody>
</table>
2
Confirm reaming diameter

Instrument

351.717 Depth Gauge for Medullary Nails

To estimate the canal diameter, position image intensifier for an AP view of the limb at the level of the isthmus. Hold the radiographic depth gauge perpendicular to the limb and overlay the diameter tabs over the isthmus. Read the diameter on the tab that fills the canal. Repeat with a ML view.

a For reaming only, choose the implant diameter. Select a reamer head 1.0 mm to 1.5 mm larger than the chosen implant diameter.
b For bone harvesting only, select a reamer head 1.0 mm to 1.5 mm larger than the canal diameter at the isthmus.

Note: Measure both in AP and LM view.

Caution: The distance of the depth gauge from the bone and the position of the receiver affect the diameter measurement. Always place the depth gauge on the side of the limb closest to the receiver. Estimate the real width as follows:
Distance between depth gauge and bone
- 25 mm = 1 mm larger reading
- 50 mm = 2 mm larger reading
- 100 mm = 3 mm larger reading
3
Access canal and place reaming rod

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>393.100</td>
<td>Universal Chuck with T-Handle</td>
</tr>
<tr>
<td>352.032</td>
<td>SynReam Reaming Rod Ø 2.5 mm, short, length 950 mm</td>
</tr>
</tbody>
</table>

- Gain access to the intramedullary canal using standard opening procedures and instrumentation for the chosen implant or entry point. Reduce the fracture, if present.

- Attach the universal chuck with T-handle to the reaming rod. Insert the reaming rod into the canal to the physeal scar. Verify its position with the image intensifier.

- **Note:** Ensure the reaming rod is centered in the canal in both AP and LM view.
4

Confirm nail length (for reaming only)

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>351.717</td>
<td>Depth Gauge for Medullary Nails</td>
</tr>
<tr>
<td>351.719</td>
<td>Elongation Tube for Reaming Rods of length 950 mm</td>
</tr>
</tbody>
</table>

Assemble the extension tube to the depth gauge.

Place the depth gauge assembly over the reaming rod.

Note: The tip of the depth gauge assembly should be located at the entry site.

Caution: Use the depth gauge only with the 950 mm reaming rod.
Determine the length of the canal. Choose the length of the implant accordingly.

Note: Consider dynamization when choosing the length of the implant.
1
Attach reamer head

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>352.250S – 352.259S</td>
<td>RIA Medullary Reamer Heads 12.0 mm – 16.5 mm, sterile</td>
</tr>
<tr>
<td>352.261S – 352.265S</td>
<td>RIA Medullary Reamer Heads 17.0 mm – 19.0 mm, sterile</td>
</tr>
<tr>
<td>314.745S</td>
<td>RIA Tube Assembly, for RIA Drive Shaft of length 360 mm, for No. 314.742, sterile</td>
</tr>
<tr>
<td>314.746S</td>
<td>RIA Tube Assembly, for RIA Drive Shaft of length 520 mm, for No. 314.743, sterile</td>
</tr>
</tbody>
</table>

Select the appropriate reamer head. Insert it into the tube assembly.

Note: The reamer head is attached correctly when it can spin freely and is retained by the tube assembly.

Caution: Reamer heads are sharp. Use care when attaching the reamer head to the tube assembly.
2
Attach drive shaft to tube assembly and reamer head

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.742</td>
<td>RIA Drive Shaft, length 360 mm</td>
</tr>
<tr>
<td>314.743</td>
<td>RIA Drive Shaft, length 520 mm</td>
</tr>
</tbody>
</table>

Select the respective length of the drive shaft. Guide the tip of the drive shaft through the RIA tube assembly.

Mat the hexagonal end of the RIA drive shaft with the hexagonal recess in the reamer head.

Note: Visually check mating through the aspiration holes.
Note: The drive shaft is properly attached when the hex flats are not visible. The helix is also visible when properly attached.

Note: The Drive Shaft hex is properly engaged in the reamer head when the retaining groove is hidden.
Push the outer sleeve of the RIA drive shaft forward to engage the body of the RIA tube assembly.

Note: The drive shaft is properly attached when the tan/gray plastic coupling shaft is no longer visible.
Attach locking clip

Instrument

352.260S Locking Clip for RIA, sterile

Slide the locking clip onto the assembled RIA drive shaft and tube assembly.

Note: The small ridge on the inner surface of the locking clip matches the groove between the drive shaft and the tube assembly.

Rotate the locking clip until the circular notches on the locking clip align with the corresponding buttons on the tube assembly.
4
Attach drive shaft seal

Instrument

351.718.02S RIA Drive Shaft Seal

Attach the drive shaft seal to the proximal end of the drive shaft.

Note: The drive shaft seal is important to retain irrigation in the cannulation of the drive shaft.

5
Attach drive unit with large quick coupling

Instruments

530.605 Battery Reamer/Drill
530.760 Quick Coupling for DHS/DCS Triple Reamers, for Battery Power Line

Select a cannulated drive unit that will deliver 3.5 to 4.5 Nm of torque and 700 to 900 rpm (standard drill speed). Use the cannulated quick coupling to attach the drive shaft to the drive unit.

Caution: Do not use a reduction drive. Drills with a torque greater than 6 Nm must not be used. Power equipment designed for reaming must not be used.
Alternative with chuck with key

Alternative instrument

530.730 Jacob’s Chuck with Key

Use the chuck with key to attach the drive shaft to the drive unit.

Note: Insert key into one hole of chuck and tighten. Move key to all subsequent holes on the chuck and tighten again.

6 Connect irrigation

Instrument

Irrigation Tube

Other material

1–2 liter container of saline solution (e.g. isotonic 0.9% NaCl)

Suspend a 1 or 2 liter container of saline solution or irrigating fluid approximately one meter above the level of the RIA assembly.

Attach the end with spike on the irrigation tube to the irrigation container.

Note: The clamp on the irrigation set should be closed until reaming begins.
Connect the opposite end of the irrigation tube to the irrigation port on the tube assembly.

Note: The irrigation port is the smaller of the two ports and is indicated by an “I”.

7

Connect aspiration

Instrument

Aspiration Tube

Other material

2–5 liter Suction canister

Vacuum source

Connect the aspiration tube (non-flared end) to the aspiration port on the tube assembly.

Note: The aspiration port is the larger of the two ports and is indicated by an “A”.

Alternative for bone harvesting

Instrument

| 352.229S | Graft Filter for RIA, sterile |

Connect the graft filter to the aspiration port on the tube assembly. Connect the distal end of the graft filter to the aspiration tube.

Connect the other end of the aspiration tube (flared end) to the suction canister. Connect the suction canister directly to the vacuum source.

Note: Connect the irrigation/aspiration tube directly to the suction canister to avoid a reduction in suction. Never connect several suction canisters.

Start vacuum source, if necessary.

Note: Set adjustment to maximum vacuum.
Reaming

1
Introduce RIA assembly into medullary canal

Guide the reamer head over the reaming rod. Open the irrigation clamp to start flow. Turn on the vacuum source.

Note: Prior to insertion into patient’s limb, visually verify flow of irrigation fluid at the tip of the reamer head.

Advance the RIA assembly over the reaming rod until the aspiration holes are fully immersed into the bone. Check position on the image intensifier. A flow of blood and bone marrow becomes visible in the aspiration tube.

Note: Flow of aspiration begins when aspiration holes are fully immersed in the bone.

Caution: Never ream when there is no irrigation/aspiration. The irrigation/aspiration cools the reamer heads and removes bone marrow and morselized bone from the medullary cavity. It is crucial for the properties of the system.
2
Ream

Commence reaming using a gradual advancing/retracting technique. Slowly advance 20–30 mm and then retract 50–80 mm allowing the irrigation to flow in front of reamer head. Then advance until resistance is felt and repeat.

Note: An insufficient irrigation volume may lead to clogging. Never advance too fast to avoid clogging.

Caution: Periodically check that the reaming aspirate is flowing back via the aspiration port and tube into the suction canister. Stop reaming if there is no flow.

After the reamer head reaches the desired depth, withdraw the RIA assembly while maintaining rotation with the drill.

Note: Reverse the drill if advancement of the reamer becomes difficult.
1
Turn off irrigation and aspiration

Instrument

352.229S Graft Filter for RIA, sterile

Stop irrigation after withdrawing the RIA assembly from the patient. Turn off the suction or clamp the suction tubing. Disconnect the filter canister from the lid and move it to the back table.

2
Prepare graft

Hold graft filter vertically. Compress the bone graft by gently pushing down on the plunger. Estimate the volume of bone graft with the scale on the outer canister.
Bone Harvesting

3
Remove graft from filter

Invert filter vertically with the plunger in a downward position. Remove the inner filter from the canister.

Caution: When handling, do not hold the opening downwards as there is a risk of dropping the graft.

Hold the inner filter over an appropriate container.

Invert the inner filter vertically. Push the bone graft out of the filter with the plunger.
4

Augment with a bone substitute (optional)

Optional implants

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Volume</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>710.019S</td>
<td>chronOS Granules, 1.4–2.8 mm, 10.0 cc, porosity 60% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710.021S</td>
<td>chronOS Granules, 1.4–2.8 mm, 20.0 cc, porosity 60% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710.026S</td>
<td>chronOS Granules, 2.8–5.6 mm, 10.0 cc, porosity 60% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710.027S</td>
<td>chronOS Granules, 2.8–5.6 mm, 20.0 cc, porosity 60% *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To increase the volume of harvested bone graft and to provide it with structure, augment it with chronOS Granules.

Note: chronOS is a synthetic, fully resorbable and phase pure β-Tricalcium Phosphate bone substitute. The interconnected porosity allows for a complete remodeling to new bone within 6 to 18 months.

*availability dependent on regulatory conditions
Disassembly

1 Remove drive shaft

Remove and dispose of the irrigation/aspiration tube and locking clip. Push the outer sleeve of the drive shaft toward the body of the RIA tube assembly.

Keep the outer sleeve in a forward position while withdrawing the drive shaft from the body of the tube assembly.

Remove the drive shaft from the RIA tube assembly.

Note: Dispose of the tube assembly and reamer head. Remove and dispose of the drive shaft seal.
Product Information

Single-Patient-Use instruments

Reamer Heads
- Conical tip helps centralize reamer
- Deep flutes prevent clogging
- Sharp cutting edges for every case
- Diameters: 12 mm – 19 mm in 0.5 mm increments
- Stainless-steel
- Sterile packed
- Attaches to RIA Tube Assemblies

<table>
<thead>
<tr>
<th>Article No.</th>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>352.250S</td>
<td>12.0</td>
</tr>
<tr>
<td>352.251S</td>
<td>12.5</td>
</tr>
<tr>
<td>352.252S</td>
<td>13.0</td>
</tr>
<tr>
<td>352.253S</td>
<td>13.5</td>
</tr>
<tr>
<td>352.254S</td>
<td>14.0</td>
</tr>
<tr>
<td>352.255S</td>
<td>14.5</td>
</tr>
<tr>
<td>352.256S</td>
<td>15.0</td>
</tr>
<tr>
<td>352.257S</td>
<td>15.5</td>
</tr>
<tr>
<td>352.258S</td>
<td>16.0</td>
</tr>
<tr>
<td>352.259S</td>
<td>16.5</td>
</tr>
<tr>
<td>352.261S</td>
<td>17.0</td>
</tr>
<tr>
<td>352.262S</td>
<td>17.5</td>
</tr>
<tr>
<td>352.263S</td>
<td>18.0</td>
</tr>
<tr>
<td>352.264S</td>
<td>18.5</td>
</tr>
<tr>
<td>352.265S</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Tube Assemblies
- Two lengths available (attach to corresponding drive shafts)
- Sterile packed

<table>
<thead>
<tr>
<th>Article No.</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.745S</td>
<td>360</td>
</tr>
<tr>
<td>314.746S</td>
<td>520</td>
</tr>
</tbody>
</table>
351.718.025 RIA Drive Shaft Seal, sterile, pack of 2 units
- Elastomeric seal
- Prevents flow of irrigation fluid into drive unit
- Sterile packed

352.229S Graft Filter for RIA, sterile
- Collects finely morselized bone chips and marrow
- Capacity: 100 cc
- Graduations for estimating volume
- Plunger for easy removal of graft
- Sterile packed

352.260S Locking Clip
- Secures attachment between drive shaft and tube assembly
- Sterile packed

Irrigation/Aspiration Tubes
- Spike on irrigation tube to connect with irrigation source
- Clamp on irrigation tube to control flow of irrigation fluid
- Aspiration tube to connect to suction canister
Other Material

Irrigation Fluid Bag
- 1–2 Liters for reaming
- 3 Liters minimum for harvesting

Suction Canister
- 2 Liters minimum for reaming
- 3 Liters minimum for harvesting

Vacuum Source
- Wall suction or portable suction
General Instruments

<table>
<thead>
<tr>
<th>Article No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.742</td>
<td>RIA Drive Shaft, length min 360 mm</td>
</tr>
<tr>
<td>314.743</td>
<td>RIA Drive Shaft, length min 520 mm</td>
</tr>
</tbody>
</table>

- Made of superelastic, Nitinol, an alloy of nickel and titanium
- Two lengths available
- Attaches to RIA tube assemblies

<table>
<thead>
<tr>
<th>Article No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>351.050</td>
<td>Tissue Protector</td>
</tr>
<tr>
<td>351.717</td>
<td>Depth Gauge for Medullary Nails</td>
</tr>
<tr>
<td>351.719</td>
<td>Extension Tube for Reaming Rods; assembles to Depth Gauge for Medullary Nails, for No. 351.717</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>355.010</td>
<td>Medullary Tube, synthetic</td>
</tr>
<tr>
<td>393.100</td>
<td>Universal Chuck with T-Handle</td>
</tr>
<tr>
<td>352.032*</td>
<td>SynReam Reaming Rod ø 2.5 mm, short, length 950 mm</td>
</tr>
</tbody>
</table>

*Available non-sterile or sterile packed. Add “S” to the catalogue number to order sterile products.
Optional Instruments

Opening instruments

351.020 Reverse Awl, small

03.010.04 Awl Ø 12.0 mm, cannulated

03.010.115 Guide Wire Ø 3.2 mm, 290 mm

03.010.036 Drill Bit Ø 12.0 mm, cannulated, length 300 mm, for No. 532.015

351.240 Cutter for UTN/CTN and Universal Medullary Nail, Ø 11.0 mm, length 350 mm
351.060 Centering Pin Ø 4.0 mm, length 400 mm, for No. 351.240

351.920 Hand-Reamer for Medullary Canal Ø 6 mm

351.930 Hand-Reamer for Medullary Canal Ø 7 mm

351.940 Hand-Reamer for Medullary Canal Ø 8 mm

Other accessory instruments

351.782 Holding Forceps for SynReam Reaming Rod Ø 2.5 mm

03.010.093 Rod Pusher for Reaming Rod with Hexagonal Screwdriver Ø 8.0 mm
Power equipment

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>530.605</td>
<td>Battery Reamer/Drill</td>
</tr>
<tr>
<td>530.730</td>
<td>Chuck with Key, for Compact</td>
</tr>
<tr>
<td>530.760</td>
<td>Quick Coupling for DHS/DCS Triple Reamers, for Battery Power Line</td>
</tr>
</tbody>
</table>
Cleaning instruments

352.041 Cleaning Brush Ø 3.6 mm, length 600 mm, for flexible shafts

351.800 Air Jet, for cleaning Instruments with Compressed Air. **Do not sterilize**

351.810 Air Tube Ø 2.0 mm, for No. 351.800

RIA-Instruments Set (105.309)

Instruments
314.742 RIA Drive Shaft, length 360 mm
314.743 RIA Drive Shaft, length 520 mm
351.050 Tissue Protector
351.717 Depth Gauge for Medullary Nails
351.719 Extension Tube for Reaming Rods; assembles to Depth Gauge for Medullary Nails, for No. 351.717
355.010 Medullary Tube, synthetic
393.100 Universal Chuck with T-Handle

690.308 Graphic Case for RIA Instrument Set, without Contents
Bibliography

Fat embolism and reamed/unreamed nailing

Osteomyelitis

Bone harvesting

